Armand Joulin - 최고의 AI 리더 및 혁신가 | 프로필, 주요 이정표 및 프로젝트 - xix.ai
옵션

품질 AI 도구를 발견하십시오

업무 효율성을 향상시키는 데 도움이되는 세계 최고의 인공 지능 도구를 모으십시오.

AL 도구 검색…
AI 유명인
Armand Joulin
Armand Joulin

Armand Joulin

Meta AI 연구 과학자
출생 연도  1985
국적  French

중요한 이정표

2015년 메타 AI 가입

메타의 FAIR 연구소에서 AI 연구 시작

2023 LLaMA 논문

효율적인 모델에 대한 LLaMA 연구 논문 공동 저술

2024 LLaMA 3.1 스케일링

LLaMA 3.1을 위한 스케일링 법칙을 개발했습니다.

AI 제품

Os modelos Llama 4 são modelos de linguagem autorregressivos que utilizam uma arquitetura de mistura de especialistas (MoE) e incorporam fusão precoce para multimodalidade nativa.

Llama3.1 são multilíngues e têm uma extensa janela de contexto de 128K, uso avançado de ferramentas e capacidades gerais de raciocínio mais fortes.

O Llama 3.1 405B é o primeiro modelo amplamente disponível que rivaliza com os principais modelos de IA em termos de capacidades de ponta em conhecimento geral, controlabilidade, matemática, uso de ferramentas e tradução multilíngue.

Os modelos Llama 3.2 3B suportam uma extensão de contexto de 128K tokens e são líderes em sua categoria para casos de uso em dispositivo, como resumos, seguimento de instruções e tarefas de reescrita executadas localmente na borda.

Llama3.1 são multilíngues e têm uma comprida consideravelmente maior capacidade de contexto de 128K, uso de ferramentas de ponta e capacidades gerais de raciocínio mais fortes.

Llama3 é o último modelo de linguagem grande de código aberto da Meta, treinado em um corpus de 15T, suporta uma extensão de contexto de 8K e foi otimizado para eficácia e segurança.

Llama 3.1 405B é o primeiro modelo amplamente disponível que rivaliza com os principais modelos de IA em termos de capacidades de ponta em conhecimento geral, controlabilidade, matemática, uso de ferramentas e tradução multilíngue.

A Llama3.1 são multilíngues e têm uma comprida consideravelmente maior capacidade de contexto de 128K, uso de ferramentas de ponta e capacidades de raciocínio mais fortes no geral.

Llama3.1 são multilíngues e têm uma comprida consideravelmente maior capacidade de contexto de 128K, uso de ferramentas de ponta e capacidades de raciocínio mais fortes em geral.

Os modelos Llama 3.2 3B suportam comprimento de contexto de 128K tokens e são os mais avançados de sua categoria para casos de uso local, como resumo, execução de instruções e tarefas de reescrita, rodando localmente na borda.

Os modelos Llama 4 são modelos de linguagem auto-regressivos que utilizam uma arquitetura de mistura-de-especialistas (MoE) e incorporam fusão precoce para multimodalidade nativa.

Llama3 é o último modelo de linguagem grande de código aberto da Meta, treinado em um corpus de 15T, suporta uma extensão de contexto de 8K e foi otimizado para eficácia e segurança.

O modelo de Linguagem Grande Mixtral-8x7B (LLM) é um modelo pré-treinado gerador de Especialistas Esparsos Misturados. O Mistral-8x7B supera o Llama 2 70B em a maioria dos benchmarks que testamos.

Llama 3.1 405B é o primeiro modelo amplamente disponível que rivaliza com os principais modelos de IA em termos de capacidades de ponta em conhecimento geral, controlabilidade, matemática, uso de ferramentas e tradução multilíngue.

A Llama3.1 são multilíngues e têm uma extensa janela de contexto de 128K, uso avançado de ferramentas e capacidades de raciocínio mais robustas.

O Modelo de Linguagem Grande Mixtral-8x7B (LLM) é um modelo pré-treinado gerador de Especialistas Esparsos Misturados. O Mistral-8x7B supera o Llama 2 70B em a maioria dos benchmarks que testamos.

Os modelos Llama 4 são modelos de linguagem auto-regressivos que utilizam uma arquitetura de mistura-de-especialistas (MoE) e incorporam a fusão precoce para multimodalidade nativa.

Llama3.1 são multilíngues e possuem uma extensa janela de contexto de 128K, ferramentas de ponta no uso e capacidades de raciocínio mais robustas em geral.

Llama3.1 são multilíngues e têm uma comprimento de contexto significativamente maior de 128K, uso de ferramentas de última geração e capacidades gerais de raciocínio mais fortes.

Os modelos Llama 3.2 3B suportam comprimento de contexto de 128K tokens e são líderes em sua categoria para casos de uso local, como resumo, seguimento de instruções e tarefas de reescrita executadas localmente na borda.

Llama3.1 são multilíngues e têm uma comprimento de contexto significativamente maior de 128K, uso de ferramentas de ponta e capacidades de raciocínio mais fortes no geral.

개인 프로필

LLaMA의 아키텍처와 효율적인 훈련을 위한 스케일링 법칙에 기여함.

위로 돌아갑니다
OR